搜索算法

来自皮卡鱼 Wiki
New讨论 | 贡献2024年2月23日 (五) 00:59的版本
跳到导航 跳到搜索

简单Minimax搜索

Minimax搜索

象棋属于零和博弈,有红方和黑方,双方的收益总和为0,一方的优势总是伴随着另一方的劣势。此时,我们可以使用Minimax进行搜索。

为了方便理解,我们暂且把Maximizing Player称为“红方”,把Minimizing Player称为“黑方”,我们的评估函数暂时返回的是相对于红方的分数(分高说明红方优势,分低说明红方劣势)。

博弈的双方都想让收益最大化,红方想让分数尽量高,黑方想让分数尽量低,这样就能最大程度上保证自己这方的优势,同时让对方占到的优势最小。

举个例子,红方在一个局面有两种走法。一种走法可以吃掉对方的车,此时的分数是+500,另一种走法是送掉自己的车,此时的分数是-500。红方当然会选择对自己有利的走法,即第一种,所以该节点的分数就是+500。

伪代码如下:

int minimax(int depth, bool isMaximizingPlayer) { // 层数, 是否红方
    if (depth == 0 || isGameOver()) { // 搜索到叶子节点或游戏结束,直接返回评估
        return evaluate();
    }

    if (isMaximizingPlayer) { // 如果当前是红方
        int maxEval = INT_MIN; // 初始化为尽量小的值,方便程序找出所有走法中分数的最大值
        for (Move move : getPossibleMoves()) { // 走法生成
            makeMove(move); // 走子
            int eval = minimax(depth - 1, false);
            undoMove(move); // 恢复到走子前的局面
            maxEval = std::max(maxEval, eval);
        }
        return maxEval;
    } else { // 如果当前是黑方
        int minEval = INT_MAX;  // 初始化为尽量大的值,方便程序找出所有走法中分数的最小值
        for (Move move : getPossibleMoves()) { // 走法生成
            makeMove(move); // 走子
            int eval = minimax(depth - 1, true);
            undoMove(move); // 恢复到走子前的局面
            minEval = std::min(minEval, eval);
        }
        return minEval;
    }
}

Alpha-Beta剪枝

上面实现的简单Minimax搜索,效率其实是很低的。我们这时就要引入一种新的搜索策略——Alpha-Beta剪枝,这种剪枝方法可以在不改变结果的前提下大大减少搜索的节点数。

Alpha-Beta剪枝

等待更新...