神经网络的“自我学习”是什么?

来自皮卡鱼 Wiki
Afkbad讨论 | 贡献2023年11月23日 (四) 03:21的版本 (创建页面,内容为“在主流棋类引擎中,神经网络都属于离线监督学习。 作者或者训练师会先让引擎自对弈,从而生成数据(棋谱)。 以nnue跑谱为例,这些数据里面有每步的局面、分数、和这局游戏的结果等等信息,通常是以每步几层或者几千、几万节点自对弈生成。 生成了足够多的数据后,便拿去训练,训练过程可以简单理解为去调整神经网络里的海量参数,使得…”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳到导航 跳到搜索

在主流棋类引擎中,神经网络都属于离线监督学习。


作者或者训练师会先让引擎自对弈,从而生成数据(棋谱)。

以nnue跑谱为例,这些数据里面有每步的局面、分数、和这局游戏的结果等等信息,通常是以每步几层或者几千、几万节点自对弈生成。

生成了足够多的数据后,便拿去训练,训练过程可以简单理解为去调整神经网络里的海量参数,使得网络的输出接近更数据。比如一个局面100分,训练就会改变神经网络参数让评估分数去接近这个100分。