神经网络的“自我学习”是什么?:修订间差异

来自皮卡鱼 Wiki
跳到导航 跳到搜索
无编辑摘要
无编辑摘要
 
第4行: 第4行:
在主流棋类引擎中,神经网络都属于离线监督学习。
在主流棋类引擎中,神经网络都属于离线监督学习。


作者或者训练师会先让引擎自对弈,从而生成数据(棋谱)。
作者会先让引擎自对弈,从而生成数据(棋谱)。


以nnue跑谱为例,这些数据里面有每步的局面、分数、和这局游戏的结果等等信息,通常是以每步几层或者几千、几万节点自对弈生成。
以nnue跑谱为例,这些数据里面有每步的局面、分数、和这局游戏的结果等等信息,通常是以每步几层或者几千、几万节点自对弈生成。
第10行: 第10行:
生成了足够多的数据后,便拿去训练,训练过程可以简单理解为去调整神经网络里的海量参数,使得网络的输出更接近数据。比如一个局面100分,训练就会改变神经网络参数让评估分数去接近这个100分。
生成了足够多的数据后,便拿去训练,训练过程可以简单理解为去调整神经网络里的海量参数,使得网络的输出更接近数据。比如一个局面100分,训练就会改变神经网络参数让评估分数去接近这个100分。


'''因为是离线学习,依赖作者训练发布,所以你使用引擎是无法让引擎“学习”的(但棋类也完全不适合在线学习),而引擎有[[置换表(哈希)是什么?设置多少好?|哈希表]]这种暂时的信息储存,所以拆棋时会感觉引擎有记忆功能,但重新加载后便失去了记忆。'''
因为是离线学习,依赖作者训练发布,所以你使用引擎是无法让引擎“学习”的(但棋类也完全不适合在线学习),而引擎有[[置换表(哈希)是什么?设置多少好?|哈希表]]这种暂时的信息储存,所以拆棋时会感觉引擎有记忆功能,但重新加载后便失去了记忆。


'''如果有人声称引擎可以边使用边学习,并试图让人掏钱,就有极大概率是骗子。'''
所以强引擎目前不可能一边使用一边学习,而是依赖作者训练好之后再发布出来

2024年12月3日 (二) 17:22的最新版本

返回“棋软知识”

在主流棋类引擎中,神经网络都属于离线监督学习。

作者会先让引擎自对弈,从而生成数据(棋谱)。

以nnue跑谱为例,这些数据里面有每步的局面、分数、和这局游戏的结果等等信息,通常是以每步几层或者几千、几万节点自对弈生成。

生成了足够多的数据后,便拿去训练,训练过程可以简单理解为去调整神经网络里的海量参数,使得网络的输出更接近数据。比如一个局面100分,训练就会改变神经网络参数让评估分数去接近这个100分。

因为是离线学习,依赖作者训练发布,所以你使用引擎是无法让引擎“学习”的(但棋类也完全不适合在线学习),而引擎有哈希表这种暂时的信息储存,所以拆棋时会感觉引擎有记忆功能,但重新加载后便失去了记忆。

所以强引擎目前不可能一边使用一边学习,而是依赖作者训练好之后再发布出来